

FPGA Lock IP
User Guide

Rev 2.0

- 2 -

1. Overview
FPGAs are much more flexible than ASICs, they are however much more difficult to secure. External
configuration devices mean PCBs are easily copied. IP has also been difficult to license, especially
for evaluation purposes. Bitstream encryption is available in some devices but often not in high
volume lower cost devices.

The FPGA Lock core enables FPGA images, IP and hardware to be secured with a tiny cheap
external device, one IO pin and a small logic footprint.

The core works with the Microchip ATSHA204A. This performs a NIST SHA-256 hash with a user
programmed 256 bit secret key, a core generated 256 bit random “challenge” and the device’s
serial number, then returns the result. The core reads the devices serial number then performs the
same hash with the serial number, challenge and secret key internally. If the ATSHA204A
generated results match the internally calculated values the core confirms a properly configured
device is present. If a correctly programmed device is not present FPGA functionality can be
disabled.

The ATSHA204A variant used is a three pin SOT-23 device, the interface to it is driven by a single
FPGA pin. The device operates with a 2.0V to 5.5V supply, communications voltage 1.8V to 5.5V.

The devices are guaranteed to have a unique 72 bit ID, 24 bits are static so the 48 variable ID bits
are reported by the core when a hash test is triggered. This can also be used for inventory control.

A random 256 bit number is generated for each challenge, the target device serial number is also
used in the hash. One device’s serial number and the random challenges for a hash check are
captured below.

A PCIe Board is secured with an ATSHA204A, one resistor and one fpga pin.

- 3 -

The core is designed to be compact and use as few FPGA resources as possible (< 750 registers, 2
block rams) but be easily placed and routed to meet design constraints. The Quartus resources
summary from a design targeted at a CYC1000 evaluation board is shown here. Note the design
also includes an instance of the KEY Writer and a signal tap instance.

The KEY Writer design is provided as part of the FPGA Lock IP package. This allows users to
quickly program and lock their custom secret key on their PCBs.

In a target design, delaying the trigger of the hash check for a period could allow CEMs to build and
test designs with full functionality. When the assembled/ tested boards are received the
ATSHA204A can be programmed in situ with a quickly loaded FPGA image with the Key Writer
module to permanently enable functionality after power on.

The secret key can be programmed in the ATSHA204A at the factory (contact Microchip for details),
or in a stand-alone programmer.

The FPGA Lock and Key Writer are provided in clear VHDL to allow user verification of operation.

Demonstration
A quick 2 minute demonstration of the FPGA Lock and Key Writer functionality can be seen here…

https://youtu.be/yH0eSVunF2M

The ATSHA204A devices are delivered with a default set of keys. In the demonstration a test is
done against a fresh device. This fails to match the expected secret key hash result so the ‘enable’
output goes inactive. The secret key is then programmed and another test is performed, this time
the result matches and the ‘enable’ output remains active.

- 4 -

2. Implementation

2.1 FPGA Lock
2.1.1 FPGA Lock Port Descriptions

Port Type In/Out Description
sim Generic Set to ‘0’
bit_period Generic Number of System clock cycles in 4.45us (rounded

up)
clk std_logic In System clock
rst std_logic In Active high reset synchronous to System clock
dio std_logic Inout Bi-directional IO Pin interface to the ATSHA204A.
go std_logic In Single system clock width trigger to send the

challenge and do a hash test.
serial_no std_logic_vector(47..0) Out 48 Bit ATSHA204A Serial number
serial_no_valid std_logic Out Flag that is set when the serial number has been

read and is valid.
enable std_logic Out Enable output to the FPGA, this is the result of a

test of the ATSHA204A.

This is reset to ‘1’ so functionality defaults to
enabled. When the check is completed if it fails
this is driven to ‘0’.

hash_tested std_logic Out Flag that the challenge and hash comparison has
completed.

timeout_error std_logic Out No device has been detected.
glitch_error std_logic Out A start bit has been detected from the ATSHA204A

but when checked at a half bit period it is no
longer present.

2.1.2 FPGA Lock Instantiation

The FPGA Lock is instantiated as follows…

fpga_lk:entity work.fpga_lock
generic map
 (sim => '0', -- in std_logic := '0';
 bit_period => "0110111101") -- in std_logic_vector(9 downto 0)) -- # Clocks
for 4.45 us
port map (
 clk => clk, -- in std_logic;
 rst => rst, -- in std_logic;
 go => fpga_lock_go, -- in std_logic;
 dio => fpga_lock_dio, -- inout std_logic;
 serial_no => serial_no, -- out std_logic_vector(47 downto 0);
 ser_no_valid => serial_no_valid, -- out std_logic;
 enable => enable , -- out std_logic;
 hash_tested => hash_tested , -- out std_logic;
 timeout_error => timeout_error, -- out std_logic;
 glitch_error => glitch_error -- out std_logic;
);

- 5 -

2.2 Key Writer

2.2.1 Key Writer Port Descriptions

Port Type In/Out Description
sim Generic Set to ‘0’
bit_period Generic Number of System clock cycles in 4.45us (rounded

up)
clk std_logic In System clock
rst std_logic In Active high reset synchronous to System clock
dio std_logic Inout Bi-directional IO Pin interface to the ATSHA204A.
go std_logic In Single system clock width trigger to start the

key_write process
key_written std_logic Out Flag that the key write process has completed.

serial_no std_logic_vector(47..0) Out N/A
serial_no_valid std_logic Out N/A
enable std_logic Out N/A
hash_tested std_logic Out N/A
timeout_error std_logic Out N/A
glitch_error std_logic Out N/A

2.2.2 Key Writer Instantiation

key_wr:entity work.key_writer
generic map
 (sim => '0', -- in std_logic := '0';
 bit_period => "0110111101") -- in std_logic_vector(9 downto 0));
port map (
 clk => clk, -- in std_logic;
 rst => rst, -- in std_logic;
 go => key_wr_go, -- in std_logic;
 key_written => key_wr_done, -- out std_logic;
 dio => key_wr_dio, -- inout std_logic;
 serial_no => open,
 ser_no_valid => open,
 enable => open,
 hash_tested => open,
 timeout_error => open,
 glitch_error => open,
 debug => open
);

- 6 -

2.3 File list

2.3.1 FPGA Lock
For Intel designs add the following files to the FPGA project.

fpga_lock.vhd
atsha204a_if.vhd
crc16.vhd
trn_gen.vhd
line_if.vhd
sha256_calc.vhd
mess_key_ram_256x32.vhd
workings_ram_128x32.vhd

For Xilinx designs add
fpga_lock.vhd
atsha204a_if.vhd
crc16.vhd
trn_gen.vhd
line_if.vhd
sha256_calc.vhd
inferable_dp_ram_1clk.vhd
xil_mess_key_ran_256x32.vhd
xil_workings_ram_128x32.vhd

2.3.2 Key Writer
For Intel designs add the following files to the FPGA project.

key_writer.vhd
key_wr_atsha204a_if.vhd
crc16.vhd
line_if.vhd
mess_key_ram_256x32.vhd

For Xilinx designs add

key_writer.vhd
key_wr_atsha204a_if.vhd
crc16.vhd
line_if.vhd
inferable_dp_ram_1clk.vhd
xil_mess_key_ran_256x32.vhd

- 7 -

2.4 Constraints

If the system clock is defined and the trigger inputs are synchronous the only thing that needs
constrained is the bidirectional dio pin. The communication ‘bit period’ is 445uS so only a very loose
constraint is needed. The following creates a virtual clock and applies a 500ps input and output
delay constraint. These constraints work in both Quartus and Vivado and should be added to your
design’s *.sdc or *.xdc file.

create_clock -name virt_inout_clk -period 1000
set_clock_groups -asynchronous -group [get_clocks virt_inout_clk]

set_output_delay -clock [get_clocks virt_inout_clk] 500.000 [get_ports fpga_lock_io]
set_input_delay -clock [get_clocks virt_inout_clk] 500.000 [get_ports fpga_lock_io]
set_output_delay -clock [get_clocks virt_inout_clk] 500.000 [get_ports key_wr_io]
set_input_delay -clock [get_clocks virt_inout_clk] 500.000 [get_ports key_wr_io]

With Xilinx designs the following must be added to the *.XDC to allow the combinatorial loops in
the random number generator module (change the hierarchy as appropriate).

set_property ALLOW_COMBINATORIAL_LOOPS true [get_nets {fpga_lk/real_challenge.chal_gen/ring5[0]}]
set_property ALLOW_COMBINATORIAL_LOOPS true [get_nets {fpga_lk/real_challenge.chal_gen/ring7[0]}]
set_property ALLOW_COMBINATORIAL_LOOPS true [get_nets {fpga_lk/real_challenge.chal_gen/ring9[0]}]
set_property ALLOW_COMBINATORIAL_LOOPS true [get_nets {fpga_lk/real_challenge.chal_gen/ring11[0]}]
set_property ALLOW_COMBINATORIAL_LOOPS true [get_nets {fpga_lk/real_challenge.chal_gen/ring13[0]}]

2.5 Signal Integrity

Communications with the ATSHA204A is via an ‘open drain’ interface with an external pull up.

Communication is relatively slow with a bit period of 4.45us however it is the user’s responsibility to
ensure the integrity of the link between the FPGA and ATSHA204A.

A successful hash test down 2M of ribbon cable, this was a 3.3V link with a 2.2K pullup.

- 8 -

2.6 Setting a Custom 256 Bit Key

The simulations and example builds in the delivered IP all use a secret key of
0xA5A5A5A511111111222222223333333344444444555555556666666677777777

For user implementation a unique 256 bit secret key should be chosen.

2.6.1 Intel Designs

In both the FPGA_Lock and Key_Writer designs the secret key is defined in “message_init.hex”.

In Quartus, File-> Open then change the file type selection to ‘All Files’. Navigate to the
design\vhdl directory, select the “messge_init.hex” then when prompted set the Word Size to 32.

Quartus displays the file contents as below..

The secret key is stored in addresses 0x80 to 0x87, this can be modified and saved to whatever is
required. Care should be taken not to modify any other values in this file.

- 9 -

2.6.2 Xilinx Designs

In both the FPGA_Lock and Key_Writer designs the secret key is defined in the plain text files
“xil_message_init.hex”.

The secret key is defined in the text file between lines 129 and 136. This should be set to whatever
value the user has chosen.

Again, care should be taken not to modify any other values in this file.

Note: The same secret key must be set in the FPGA_Lock and FPGA_Writer designs for
the FPGA hash test to work.

- 10 -

3. TestBench

A basic testbench is provided that demonstrates consecutive FPGA_Lock tests against two devices
with the example 0xA5A5… key and a challenge of 8* x”11111111”.

The device IDs and returned HASH test results that the testbench drives are the signal tap results
from two real ATSHA204A devices. In the FPGA_Lock module if the sim generic is set to ‘1’, the
‘random’ challenge is set to 8 x”11111111”.

When triggered the core wakes the ATSHA204A then reads its unique device ID. A Hash test is then
triggered with a write of the random challenge and the parameters to be included in the hash (eg
include the device ID). When the device returns the result each 32 bit word is compared to the
internally calculated values and the Enable output de-asserted if these do not match.

The testbench can be modified to return an incorrect value and the output will be disabled.

Scripts are provided to run the testbench with the Intel Starter version of Modelsim. To run the
testbench….

3.1 Intel Testbench
Run up Modelsim
File -> Change Directory to the FPGA_Lock/Modelsim directory
In the Transcript window type….
“source Intel_Compile_Run_FPGA_Lock_testbench.do”

A ‘work’ subdirectory should be created then the design and testbench compiled into it, then run
with the wave window loaded with a range of pertinent signals. The test should run for 160ms.

The Intel version of Modelsim has the altera_mf library pre-compiled, if using a different version
this library must be compiled from the Quartus source and mapped to in modelsim.ini

- 11 -

3.2 Xilinx Testbench

Run up Modelsim
File -> Change Directory to the FPGA_Lock/Modelsim directory
In the Transcript window type
“source Xilinx_Compile_Run_FPGA_Lock_testbench.do”

A ‘work’ subdirectory should be created then the design and testbench compiled into it, then run
with the wave window loaded with a range of pertinent signals. The test should run for 160ms.

- 12 -

4. Example Builds

Two very basic example Intel and Xilinx designs are provided to demonstrate the implementation of
the FPGA_Lock and Key_Writer designs.

The top level design files are…
CYC1000_FPFA_Lock_Demo\vhdl\cyc1000fpga_lock_demo.vhd
Artix7_FPGA_Lock_Demo\vhdl\artix7_fpga_lock_demo.vhd

Examining these will show how easily the FPGA Lock and Key Writer modules are included in a
design.

The Project files are….
CYC1000_FPFA_Lock_Demo\Intel\cyc1000fpga_lock_demo.qpf
Artix7_FPGA_Lock_Demo\Artix7_FPGA_Lock_Demo\Artix7_FPGA_Lock_Demo.xpr

The projects are targeted at low end devices and use Quartus Lite 18.1 and Vivado 2018.3 so they
can be opened and rebuilt by more recent versions of the tools.

4.1 Intel
An example design is provided targeting the Cyclone 10 on Arrow CYC1000 development board.
The contains the FPGA Lock and Key Writer modules but they drive separate IO pins as they
would in separate implementations.

The FPGA Lock IO is on FPGA pin D16, this is connected to the PMOD header D3, the Key Writer IO
to FPGA pin F16, PMOD-D2.

PMOD Header J8 looking into the connector

3.3V GND D3
FPGA
Lock
IO

D2
Key
Writer
IO

D1
Sel
Key
Wr

D0
Sel
Lock
Test

3.3V GND D7 D6 D5 D4

LEDs
LED0 – (Nearest the USB connector) – FPGA Functionality Enable/ result of FPGA Lock Test
LED2 – Lock Test Completed
LED4 – Timeout error
LED6 – Glitch Error
LED7 – Key Write Done

User Pushbuttons
PB3 – (Nearest the PMOD connector) – Do FPGA Lock Test
PB2 – Do Key Write

There is only one user button on this board so two inputs are provided to select whether a Lock
Test or Key Write will be triggered.

- 13 -

Implementing both cores in the design allows the secret key to be programmed in an ATSHA204A,
then a hash test done to confirm it has been correctly configured. This arrangement could be used
in production.

4.2 Xilinx
An example design is provided targeting the Artix 7 on the Digilent Arty Development board, this
contains both the FPGA Lock and KEY Writer modules.

The FPGA Lock IO is on FPGA pin V11, this is connected to the PMOD header JC-D3, the Key Writer
IO to FPGA pin V10, PMOD JC-D2.

PMOD Header JC looking into the connector

3.3V GND D3
FPGA
Lock
IO

D2
Key
Writer
IO

D1 D0

3.3V GND D7 D6 D5 D4

The FPGA Lock test is triggered by BTN0 (furthest away from the USB connector)
A Key Write is triggered by BTN1.

LD4 - FPGA Functionality Enable/ result of FPGA Lock Test
LD5 – Lock Test Completed
LD6 – Timeout Error
LD7 – Glitch Error

LD0 – Goes red -> green to show the Key Write has been performed.

- 14 -

5. Purchase

Licensing is on a ‘site’ basis, the purchase of a site licence will allow the use of the core in any
projects without restriction.

Please contact nial@nialstewartdevelopments.co.uk for full licensing details and with any queries
about purchasing the core.

User Guide Changelog

Version Date Changes
1.0 09/05/2023 First Customer Release
2.0 10/01/2024 Inferrable rams used for the Xilinx build.

Improved Key Writer implementation description
Constraints updated
Testbench scripts improved
Example design descriptions updated

